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Abstract. Using an example of physical interactions between proteins, we
study how a perturbation propagates in the equilibrium of a network of reversible
reactions governed by the law of mass action. We introduce a matrix formalism
to describe the linear response of all equilibrium concentrations to shifts in total
abundances of individual reactants, and reveal its heuristic analogy to the flow
of electric current in a network of resistors. Our main conclusion is that, on
average, the induced changes in equilibrium concentrations decay exponentially
as a function of network distance from the source of perturbation. We analyze
how this decay is influenced by such factors as the topology of a network, binding
strength, and correlations between concentrations of neighboring nodes. We find
that the minimal branching of the network, small values of dissociation constants,
and low equilibrium free (unbound) concentrations of reacting substances all
decrease the decay constant and thus increase the range of propagation. Exact
analytic expressions for the decay constant are obtained for the case of equally
strong interactions and uniform as well as oscillating concentrations on the
Bethe lattice. Our general findings are illustrated using a real network of
protein–protein interactions in baker’s yeast with experimentally determined
protein concentrations.
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1. Introduction

Equilibria in a broad class of microscopically reversible processes where the direct and reverse
reaction rates are proportional to the product of concentrations of reactants are described by
the law of mass action (LMA). It has been rigorously proven that such processes have a
unique equilibrium state which is completely defined by the set of initial concentrations and
reaction constants [1]. Well-known examples include equilibria in chemically or physically
reacting systems such as e.g. a pair of molecules reversibly binding each other. Large sets of
interacting substances are often represented by networks, with nodes and links corresponding
to reactants and their propensity for pairwise interactions correspondingly. One of the best-
studied examples of such networks is that formed by all protein–protein physical interactions
(pairwise bindings) in a given organism. In this case, the LMA determines the equilibrium
free (unbound) concentrations of individual proteins as well as those of complexes formed
by two or more proteins bound to each other given the set of dissociation constants of all
pairwise protein–protein interactions and abundances (total concentrations) of all participating
proteins. The protein abundances are subject to both stochastic fluctuations in the course of their
production and degradation as well as to systematic changes in response to external and internal
stimuli. This results in dynamical fluctuations in the LMA equilibrium state of the network.

A surprising feature observed in virtually all recent large-scale studies of these networks
in a wide-ranging variety of biological organisms is their globally connected topology. Indeed,
most pairs of protein nodes are linked to each other by relatively short chains of interactions.
A change in the total abundance of a protein modifies free and bound concentrations of its
immediate neighbors, which in their turn influence their neighbors, etc. Thus a fluctuation
localized on just one reactant to some degree affects equilibrium concentrations of all nodes in
the same weakly-connected topological component of the network. In biology such propagation
of fluctuations far away from their source presents a great threat of undesirable cross-talk
between different functional processes, simultaneously taking place in an organism. Thus it
is important to understand whether and how this propagation gets attenuated and under what
conditions it is minimized. On the other side, it has been shown that sometimes changes
in equilibrium concentrations propagating beyond immediate neighbors of the perturbed
protein are used for meaningful biological regulation or signaling. An example is a sensitive
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balance of interactions between sigma-factors, anti-sigma factors, and anti-anti-sigma-factors
in bacteria [2]. In this case, a relevant question is under what conditions the propagation
of the signal in a desirable direction is least attenuated while its indiscriminate spread is
minimized.

In this work, we numerically and analytically study how localized perturbations such as
changes of concentrations of individual reactants affect the binding equilibrium at all nodes
of a reaction network. Our main conclusion is that under a broad range of conditions such
perturbations exponentially decay with the network distance away from the perturbed node.
Luckily, this makes protein binding networks poor conduits for indiscriminate propagation
of fluctuations which would have led to a chaotic mutual influence between biologically
distinct pathways. On the other hand, we also show that under carefully selected conditions,
a perturbation can propagate relatively far with a minimal attenuation. We first develop a linear
response theory and numerical methods for a general case of propagation of perturbations in a
network of an arbitrary topology, concentrations and dissociation constants. A realistic protein
binding network of baker’s yeast is used for illustration. Then several simpler analytically
solvable case studies are shown to confirm the predictions of linear response theory and
numerical results.

2. Methods and results

2.1. LMA equilibrium

In what follows we will use a simple case of our general formalism in which the reaction
network is fully determined by a network of pairwise binding interactions betweenN distinct
types of proteins (or any other molecules for that matter). The existence of a link between
verticesi and j means that these proteins reversibly bind each other to form a two-protein
complex (hetero- or homo-dimer)i j . Throughout this paper, we will consider only such dimers
and ignore the existence of multi-protein complexes consisting of three or more proteins.
However, our main results could be easily extended to an arbitrary composition of complexes
or even to a more general situation of a set of substances that reversibly convert into each other
and the equilibrium of every reaction is determined by the LMA (see appendix for this most
general scenario).

The LMA states that free concentrations of proteinsFi and those of dimersDi j obey

Fi F j = ki j Di j , (1)

where ki j is the corresponding dissociation constant. A dissociation constant has units of
concentrations, the smaller iski j , the higher is the binding affinity of a pairi and j . Taking
into account the conservation of mass of each substancei , one obtains the following system of
equations that relates total concentrationsCi of proteins to their free concentrationsFi

Ci = Fi +
∑
j ↔i

Di j = Fi +
∑
j ↔i

Fi F j

ki j
. (2)

Here and below the notation
∑

j ↔i means a sum over all verticesj that are the network
neighbors of the vertexi . In a general case of four or more interconnected interacting pairs this
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system of non-linear equations allows for only numerical solution. One particularly convenient
computational method involves rewriting the equation (2) as

Fi =
Ci

1 +
∑

j ↔i F j /ki j
, (3)

and successively iterating it starting withFi = Ci until the LMA is satisfied with a
desired precision. The proof presented in [1] guarantees the uniqueness of the solution
found this way.

2.2. Propagation of concentration perturbations in LMA equilibrium

As a concrete example, we consider the propagation of small concentration perturbations in the
protein binding network of baker’s yeast,Saccharomyces cerevisiae. The set of protein–protein
physical interactions (PPI) from the BIOGRID dataset [3] was automatically curated to include
only interactions which were reported in at least two publications. Total concentrations of
proteins for yeast grown in rich growth medium conditions were taken from a genome-wide
experimental study in which Tandem-affinity precipitation (TAP) of individual proteins was
followed by the Western blot analysis [4]. The resulting dataset consists of 4185 interactions
among 1740 proteins with total concentrations ranging between 50 and 1 million molecules/cell
with the median concentration of∼3000 molecules/cell. In the absence of genome-wide
information regarding the value of dissociation constants in our simulations we assume them
all to be the sameki j = Kd. It turns out that apart from their overall strength the assignment
and distribution of equilibrium concentrations to individual links in the network is relatively
unimportant. In a follow up study we found [6] that Spearman and Pearson correlation
coefficients between all equilibrium concentrations calculated using different assignments of
dissociation constants of a given strength is usually as high as 0.8–0.95.

We observe that the magnitude of relative changes in free concentrations exhibits a
universally exponential decay with the network distance from the source of perturbation
(figure1(A)). Approximately the same exponential damping was observed in response to a small
20% decrease of a protein abundance (which is roughly the range of intrinsic noise reported
in [5]) as well as to a complete elimination of individual protein (which is experimentally
realizable as a gene knock-out or inactivation). Stronger binding (smaller values ofKd)
generally results in a longer range of propagation (slower decay) of perturbations.

A much less computationally demanding (and, as shown below, quite heuristic) approach
to find δF j induced by a small perturbation of total concentrationsδCi is to invert the matrix3̂
obtained by linearizing equation (2) around the equilibrium point:

δCi

Ci
=

∑
j

3i j
δF j

F j
, (4)

with 3̂ defined as

3i j = Ai j
Fi F j /ki j

Ci
+ δi j

(
Fi +

∑
m↔i Fi Fm/kim

)
Ci

= Ai j
Di j

Ci
+ δi j . (5)

Here, Ai j is the adjacency matrix of the network. If complexes consisting of more than
two proteins were included into consideration,Di j would have been replaced by the total
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Figure 1. (A) The averaged over perturbation of all nodes magnitude of
normalized changes in free concentrations|δFi /Fi | per unit ofδC0/C0 plotted
as a function of the distancel i 0 from the perturbed node 0. The propagation
of perturbations (equation (7)) was computed in a highly curated yeast PPI
network [3] with real-life total concentrations of individual proteins [4]; the
dissociation constantKd was increased in 10-fold increments starting from
1 nM (or 34 molecules/cell) and up to 0.1 mM (the steepest decaying curve).
(B) The exponential decay constantγ (Kd) obtained as the best fit of the
form Aexp[−γ (Kd)l i 0] to curves shown in the panel A with the real-life
concentrations (filled circles), and for randomly reshuffled concentrations (open
diamonds).

concentration of all complexes containing bothi and j among their constituents5. It follows
from equations (4) and (5) that when the change in total concentration is limited to just one
node 0, the induced relative change of free concentration of any other nodei 6= 0 satisfies

δFi

Fi
= −

∑
j ↔i

Di j

Ci

δF j

F j
. (6)

This equation shows that changes in free concentrations on nearest neighbors tend to be
of the opposite sign. Also, since

∑
j ↔i Di j /Ci = 1− Fi /Ci < 1, the absolute magnitude of

perturbation|δFi /Fi | on any node away from the source is less than or equal to its maximal value

5 Above we implicitly assumed that every protein enters every dimer in one copy. That is obviously not
true for homodimers. For proteins forming homodimers the conservation law2 changes toCi = Fi + 2F2

i /ki i +∑
j 6=i Fi F j /ki j . In this case the diagonal term of the matrix3̂ is not 1 but 1 + 2Di i /Ci .
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among its neighbors: maxj ↔i |δF j /F j |. Bonds with higherDi j /Ci are better transmitters of
perturbations from nodej to nodei . Note, that this quantity is non-symmetric: the transmission
along any particular edge is directional with preferred direction pointing from the higher total
concentration to lower one.

Inverting equation (4) one obtains the desired expression for the linear response of any free
concentration to an arbitrary perturbation in total concentrations

δFi

Fi
=

∑
j

(
3̂−1

)
i j

δC j

C j
. (7)

The physical meaning of each columnj of the inverse matrix3̂−1 is that it determines
relative changes in free concentrations of all proteins per relative changeδC j /C j in the total
concentration of the proteinj .

While the linear response approximation (7) describes infinitesimally small perturbations,
we observed that it approximates the response to a finite perturbation (even in the extreme
case of a gene knock-out) rather well. The exponential decay of perturbation was found to be
identical to that calculated using equation (3) and (with the exception of dimers containing the
knocked-out protein) the overall magnitude of changes in free concentration is comparable to
the full numerical solution.

2.3. Analogy with resistor network

To develop a better understanding of the developed matrix formalism, first consider the case
when the underlying network is bipartite (but not necessarily acyclic). To take into account the
natural sign-alternation ofδFi /Fi on immediate neighbors in the network (see equation (6)), we
introduce new variablesφi = (−1)si δFi /Fi where indexsi is 0 on one sublattice and 1 on the
other. This allows us to rewrite the equations (4) and (5) as

δC̃i =

∑
j

σi j φ j . (8)

HereδC̃i = (−1)si δCi andσ̂ is given by

σi j = −Ai j
Fi F j

ki j
+ δi j

(
Fi +

∑
m

Aim
Fi Fm

kim

)
= −Ai j Di j + δi j

(∑
k↔i

Dik + Fi

)
. (9)

In the situation whenδC̃i = δi 0δC0 (i.e. when the perturbation is limited to a single
node 0), the equations (8) and (9) can be interpreted as describing ‘electric potentials’φi

in the network of resistors with resistancesRi j = 1/σi j = 1/Di j subject to the injection of
the currentδC0 at the node 0. Each node is also shunted to an auxiliary ‘ground node’
with potentialφG = 0 by the resistanceRi G = 1/Fi . Potential gradients along edgesφi − φ j =

(−1)si δFi /Fi − (−1)s j δF j /F j = (−1)si δDi j /Di j determine relative (dimensionless) changes in
concentrations of heterodimers, while currentsI i j = (φi − φ j )/Ri j = (−1)si δDi j —the absolute
(dimensional) changes. Similarly, currents to the groundI i G = φi /Ri G = (−1)si δFi are equal
to changes in free concentrations of proteins. As in resistor networks, the Kirchoff law here
follows from the mass conservation which states that everywhere the total current flowing out
of nodei , I i G +

∑
j ↔i I i j = (−1)si (δFi +

∑
i ↔ j δDi j ) = (−1)si δCi = δC̃i is equal to the external

currentδC̃i = δi 0δC0 of changes in total concentrations.
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2.4. Effects of network topology and concentration assignment

The interpretation of the free concentrationsFi as ‘shunt conductivities’ leaking the ‘current’
to the ground means that the smaller they are, the weaker is the decay of both currentsδD
and δF with the distance. Since stronger binding generally decreases free concentrations of
all proteins, it naturally reduces the rate of decay of perturbations (visible in figure1(A)).
However, the exponential decay constantγ (Kd) appears to saturate around 2.25 asKd → 0
(figure 1(B)). This saturation is easy to understand. Indeed, consider the most ideal scenario
in which all free concentrationsFi are very small and thus the ‘current’δD is approximately
conserved (loss to the ground is negligible). The exponential growth in the number of neighbors
Nn(l ) ∼ (〈d(d − 1)〉/〈d〉)l as a function of distancel from the perturbation source means that
even in this ideal setup the average current at distancel would be proportional to 1/Nn(l ) and
thus exponentially small. The same rate of decay describes the ‘potentials’δFi /Fi as well.

However, it is important to emphasize that the ideal scenario outlined above almost never
occurs with real-life concentrations. Indeed, the limit of infinitely strong bindingk12 → 0 does
not makeall but only someof free concentrationsFi to go to zero. One can see it clearly
already for two interacting proteins. When their concentrationsC1 andC2 are not equal to each
other, in the strong binding limitk12 → 0 the free concentration of the more abundant protein
(say 1) remains nonzeroF1 → C1 − C2, while the free concentration of its less abundant partner
F2 → 0. Consider another simple example of a chain of three proteins with initial concentrations
C1, C2 andC3 reacting to form dimers 1–2 and 2–3 with the same dissociation constantk. In
this case one could still analytically calculate all free and bound concentrations,

D12 =
C1

2(C1 + C3)

[
C1 + C2 + C3 + k −

√
(C1 + C2 + C3 + k)2 − 4C2(C1 + C3)

]
,

D23 =
D12C3

C1
,

andF1 = C1 − D12, F2 = C2 − D12 − D23, F3 = C3 − D23. The logarithmic derivative,

µ1→3 =
∂F3

∂C1

C1

F3
,

quantifies the propagation of perturbation of the node 1 through this three-node channel and
in the strong binding limit has a maximum aroundC2 = C1 + C3 (see figure2). i.e. when all
three substances are completely bound:{F1, F2, F3} → 0. In a general case of a PPI network of
arbitrary topology the only situation in which free concentrations of all proteins would approach
zero aski j → 0 is when their total concentrationsCi are proportional to their degreesdi . For a
given topology of the network such concentration setup has the slowest decay of perturbations.

Most real-life PPI networks are characterized by a positive correlation between total
concentrations of interacting proteins. In the yeast network used in this study we observed this
effect to be present and highly statistically significant, (the Spearman rank correlation coefficient
was 0.27 with aP-value of 10−54). Such correlation improves the balance between total
concentrations of interacting nodes and thus somewhat lowers the average free concentration
of proteins compared to a case where this correlation is absent. Based on this we expect
that real protein–protein networks would be more prone to propagating perturbations than
their counterparts in which concentrations of proteins are randomly reshuffled and thus
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Figure 2. The propagation ratioµ1→3 defined in the text in a linear chain
C1 → C2 → C3 with strong binding (k = 1 nM) as a function of concentration
of the intermediate substanceC2. All curves have the same concentration of the
target proteinC3 = 1µM and different concentrations of the source of the signal
C1 = 2µM (green dashed line),C1 = 1µM (red solid line), andC1 = 0.5µM
(black dot-dashed line). In the strong binding limit the propagation ratio reaches
its maximum when all three substances are completely bound,C2 = C1 + C3.
Note also that the peak propagation is higher in the direction opposite to the
concentration gradient, i.e. whenC1 > C3.

the correlation between concentrations of interacting nodes is destroyed. This theoretical
expectation was indeed verified in figure1(B) (compare filled circles and open diamonds for
the network with real concentrations and the reshuffled ones).

Naturally occurring PPI networks are not bipartite. Fortunately, due to a relative sparsity
of links the number of odd-length loops in them is small and our resistor network analogy
provides a reasonable approximation. For any starting point of perturbation 0 the optimal way to
define sign-alteration in variablesφi = (−1)si δFi /Fi is by usingsi = l i 0 (herel i 0 is the distance
from the source of perturbation 0 to the nodei ). The majority of links would connect nodes
with opposite ‘parities’, while the remaining non-bipartite links could be treated as a small but
important correction to the ideal case. Like shunt conductivities to the ground, they contribute to
the dissipation of the ‘current’. Indeed, if a linki ↔ j is of this anomalous kind, its contributions
to the current leaving nodesi and j are equal to each other and given byDi j (φi +φ j ). One
example of such anomalous (non-bipartite) links is given by homodimers (see footnote 6).
In general, these anomalous links lead to the loss of the total current from the system and thus
tend to suppress the propagation of perturbations.

2.5. Analytical solution for Bethe lattice

To illustrate and rigorously validate conclusions of the previous section, we analytically
investigate a simple example of a bipartite network, the Bethe lattice, where each vertex has the
same number of interaction partners (degree)di = d. In addition, we assume that all dissociation
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constants are equal,ki j = k. When total concentrations of all proteins are also identicalCi = C,
the equilibrium concentrations of all monomers and heterodimers are given by

Fi = F =
k

2d

(√
1 +

4dC

k
− 1

)
, Di j = D =

k

2d

(
2C

k
+

1

d
−

1

d

√
1 +

4dC

k

)
. (10)

For arbitrary concentrationsCi , using the mass conservation and LMA, it is also simple to derive
the following recurrent in the lattice indexl relation for free concentrations

Cl − Fl =
Fl

k
[(d − 1)Fl+1 + Fl−1]. (11)

Assuming that the total concentration is perturbed from its universal for all network valueC
at node 0, and the deviationδFl of free concentrations from their equilibrium value given by
equation (10) are small, equation (11) yields

−

(
d +

k

F

)
δFl = (d − 1)δFl+1 + δFl−1. (12)

It has an exponentially decaying solutionδFl = δF0λ
l , where

λ = −
1

d − 1

d + k/F

2
−

√(
d + k/F

2

)2

− (d − 1)

 . (13)

As expected,−1 < λ < 0 which means that perturbations sign alternate and exponentially decay
as a function ofl . In a strong binding limit the combination of equations (13) and (10) yields

λ = −
1

d − 1

(
1−

1

d − 2

√
dk

C

)
+O

(
dk

C

)
. (14)

This confirms our qualitative prediction that in the ‘ideal’ scenario when no current is lost to
the ground, the perturbation still decays exponentially due to branching of the current at each
node. For a linear chain of proteins (d = 2), the complete solution in terms ofC andk looks
particularly elegant

λd=2 = −
(1 + 8C/k)1/4

− 1

(1 + 8C/k)1/4 + 1
. (15)

As one expects heuristically, in the limit of strong binding, a perturbation in a linear chain
propagates indefinitely,|λd=2| → 1.

To explore the effect of non-ideal concentration setup on propagation of perturbation, we
solve for the decay exponent in the linear chain (d = 2) with oscillating total concentrations,

Ci = C[1 + (−1)i a]. (16)

Response to perturbation of the even- and odd-numbered vertices has different amplitudesA2i

andA2i +1 yet decays with the same exponential coefficientλ1D±.

δF2i = A2i λ
2i , δF2i +1 = A2i +1λ

2i +1. (17)

Substitution of (17) into linearized around the equilibrium concentration recursion relation (12)
yields the system of two equations for the relative amplitudeA2i /A2i +1 andλ with the solutions

A2i

A2i +1
=

√
F2i (k + 2F2i )

F2i +1(k + 2F2i +1)
, (18)
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λ± = −
4χ

√
1− a2 −

√
2 f (1 + 4χ) − 2 f 2

1 + 4χ − f
, (19)

where χ = C/k and f =
√

16a2χ2 + 8χ + 1. Evidently, |λ±(C/k, a)|6 |λd=2(C/k)| with
equality being achieved only fora = 0. For example, fork/C → 0 anda small

λ± → −(1−
√

2a).

Thus, as it was discussed above, any variation inCi /di , which results in larger average unbound
concentrationsFi , leads to a faster decay of perturbations.

3. Conclusions

We investigated the propagation of perturbations caused by change of concentrations of
individual reactants in a reaction network whose equilibrium is governed by the LMA.
We found that in general, such perturbations decay exponentially in the network distance
from the perturbation source. It was also observed and explained that the concentration
perturbations propagate with less attenuation along the links between highly sequestered (low
free concentration) reacting substances. While the reaction network itself is non-directional,
the concentration perturbation preferably propagates down the abundance gradient, i.e. from the
substance with higher total concentration to that with the lower one. To illustrate the propagation
of concentrational perturbations, we constructed an effective resistor network with edge and
shunt resistivities inversely proportional to the dimer and free concentrations. Current flow in
such a weighted network provides a good approximation to propagation of small concentrational
perturbations. In the case of perfect sequestration, i.e. when neighboring concentrations are
perfectly balanced and binding is strong, the perturbation is still attenuated by a factor1

d−1 at
each node due to the branching of the ‘outgoing current’.

While only the case of pairwise interaction has been considered, our numeric and
analytic approaches can be easily generalized to include the three- and higher-molecular
complexes. We considered the protein binding network of baker’s yeast as the example, yet
the methods developed here are very general and can be applied to any reaction network with
the LMA equilibrium. A more detailed account of the biological implication of our analysis
of perturbations of protein–protein binding equilibrium can be found in [6]. Future studies
will include the temporal effects of the perturbation propagation, which could be reaction- or
diffusion-limited; effects of correlated and uncorrelated multiple small abundance perturbations
(noise, see [6] and references therein), fluctuations of free and bound concentrations around
LMA equilibrium for fixed abundances, and non-LMA interactions such as catalytic reactions.
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Appendix

The most general formalism suitable to any set of reversible reactions whose equilibrium is
governed by the LMA is as follows:

Consider a network ofR reactions labeled by Greek lettersα = 1, . . . , R with equilibrium
constantsKα andM substances labeled by Latin letters,i = 1, . . . , M . Each elementary act of
reactionα producesni α molecules of substancei (negative numbers indicate that the substance
is consumed). TheM × R matrix n̂ = {ni α} is referred to as the stoichiometric matrix of the
reaction network. The system is prepared in an initial state where each substancei has the
concentrationCi . After the equilibrium is reached the concentrations become equal toFi ,
defined by the LMA

∏
i Fniα

i = Kα. In our general case of both production and consumption
of substances,Fi could be either larger or smaller thanCi . The approach to equilibrium in every
reaction channelα is characterized by the reaction coordinaterα, equal to the number of direct
elementary reactions minus the number of reverse ones. The mass conservation dictates that

Ci = Fi +
∑

α

ni αrα, (A.1)

while the LMA can be written in the logarithmic form as

n̂T −−→
ln F =

−−→
ln K . (A.2)

Evidently, the rank of stoichiometric matrix cannot be larger thanM − 1 so that equation
(A.2) has a continuous family of solutions for varying initial concentrations. A small
perturbationCi → Ci + δCi leads to shifts in both equilibrium concentrations:Fi → Fi +
δFi and equilibrium reaction coordinates:rα → rα + δrα. TheseR+ M unknowns could be
calculated from the linearized LMA equations

∑
i ni αδFi /Fi = 0 and conservation lawsδCi =

δFi +
∑

α ni αrαδrα/rα. In vector notation the solution of these two sets of equations is given by

−→
δr = Û−1n̂T−−−→

δC/F, (A.3)

and
−→
δF =

−→
δC − n̂

−→
δr , (A.4)

where theR× R matrix Û is defined asUαβ =
∑

i ni αniβ/Fi . Here, we assumed thatR < M so
the condition rank(n̂) < M is satisfied and the inverse matrixÛ−1 is well defined.
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